Женщина
Кишинев
Чтобы открыть контактную информацию соискателя, нужно зарегистрироваться и оплатить услугу "Доступ к базе резюме".
Загруженный файл CV
Это резюме размещено как файл. Вы смотрите его текстовую версию, которая может немного отличаться от оригинальной.
Education
-
Technical University of Moldova
- 01/09/23 - 21/01/25
- Master degree in Computer Science
-
Ștefan cel Mare University of Suceava
- 01/10/23 - Current
- Master degree in Computer Science
-
Bachelor degree in Computer Science
- Technical University of Moldova
- 01/09/19 - 07/07/23
Skills
- Languages: Python, SQL, Java
- ETL & Data processing: Data cleaning, transformation, deduplication, JSON handling
- Databases: SQL Server, PostgreSQL, dynamic SQL, ROW_NUMBER, stored procedures
- ML & Analysis: Scikit-learn, Pandas, NumPy, MAE evaluation
- Visualization: Power BI, Matplotlib, Seaborn
- Tools: Git, Docker, APIs
- Cloud & Big data (basic): Azure
- Soft Skills: Problem-solving, teamwork, attention to detail
Languages
- Romanian (Native)
- Russian (Native)
- French (Professional working proficiency)
- English (Professional working proficiency)
Project Work Experience
-
Data Analyst at Cedacri International
- 06/2023 – 12/2023
- Worked on data integration and database management.
- Improved data processing workflows and collaborated with cross-functional teams.
-
Data Engineer Intern at AMDARIS
- 03/2025 – 04/2025
- Developed a modular ETL pipeline for environmental data.
- Automated data extraction from APIs using dynamic SQL.
- Implemented data validation, cleansing, and standardization.
- Loaded data into Data Warehouse using Bulk Insert.
- Trained a RandomForest model for predicting the AQI index.
- Created interactive dashboards in Power BI.
-
Comparative analysis of AI algorithms - Master thesis
- 09/2024 - Present
- Conducted a comparative analysis of AI algorithms using metrics such as precision, accuracy, F1 score, and recall.
- Technologies used: Python, Scikit-learn, Pandas, Matplotlib.
- Created an application using Django for real-time analysis.
-
Cloud Application Deployment and Management
- 02/2024 - 04/2024
- Deployed a cloud-based application using Docker and Kubernetes.
- Containerized the application with Docker and deployed it to a Kubernetes cluster on Microsoft Azure.
Чтобы открыть контактную информацию соискателя, нужно зарегистрироваться и оплатить услугу "Доступ к базе резюме".