Файл CV
VV
Big Data Engineer

Gender Женщина

address Кишинев

Чтобы открыть контактную информацию соискателя, нужно зарегистрироваться и оплатить услугу "Доступ к базе резюме".

Загруженный файл CV

Cv Preview

Это резюме размещено как файл. Вы смотрите его текстовую версию, которая может немного отличаться от оригинальной.

Education

  • Technical University of Moldova

    • 01/09/23 - 21/01/25
    • Master degree in Computer Science
  • Ștefan cel Mare University of Suceava

    • 01/10/23 - Current
    • Master degree in Computer Science
  • Bachelor degree in Computer Science

    • Technical University of Moldova
    • 01/09/19 - 07/07/23

Skills

  • Languages: Python, SQL, Java
  • ETL & Data processing: Data cleaning, transformation, deduplication, JSON handling
  • Databases: SQL Server, PostgreSQL, dynamic SQL, ROW_NUMBER, stored procedures
  • ML & Analysis: Scikit-learn, Pandas, NumPy, MAE evaluation
  • Visualization: Power BI, Matplotlib, Seaborn
  • Tools: Git, Docker, APIs
  • Cloud & Big data (basic): Azure
  • Soft Skills: Problem-solving, teamwork, attention to detail

Languages

  • Romanian (Native)
  • Russian (Native)
  • French (Professional working proficiency)
  • English (Professional working proficiency)

Project Work Experience

  • Data Analyst at Cedacri International

    • 06/2023 – 12/2023
    • Worked on data integration and database management.
    • Improved data processing workflows and collaborated with cross-functional teams.
  • Data Engineer Intern at AMDARIS

    • 03/2025 – 04/2025
    • Developed a modular ETL pipeline for environmental data.
    • Automated data extraction from APIs using dynamic SQL.
    • Implemented data validation, cleansing, and standardization.
    • Loaded data into Data Warehouse using Bulk Insert.
    • Trained a RandomForest model for predicting the AQI index.
    • Created interactive dashboards in Power BI.
  • Comparative analysis of AI algorithms - Master thesis

    • 09/2024 - Present
    • Conducted a comparative analysis of AI algorithms using metrics such as precision, accuracy, F1 score, and recall.
    • Technologies used: Python, Scikit-learn, Pandas, Matplotlib.
    • Created an application using Django for real-time analysis.
  • Cloud Application Deployment and Management

    • 02/2024 - 04/2024
    • Deployed a cloud-based application using Docker and Kubernetes.
    • Containerized the application with Docker and deployed it to a Kubernetes cluster on Microsoft Azure.

Чтобы открыть контактную информацию соискателя, нужно зарегистрироваться и оплатить услугу "Доступ к базе резюме".